Oberseminar Algebraische Geometrie (WS 2011/12)

Prof. Dr. Werner Bley - Prof. Dr. Ulrich Derenthal - Prof. Dr. Andreas Rosenschon

Winter 2011/12, Wednesdays, 16:30, Raum B 251 (Mathematisches Institut, Theresienstr. 39, 80333 München)

Previous semester: Summer 2011 - next semester: Summer 2012

Date Speaker Title Remarks
19.10.11 Discussion
26.10.11 Pierre Le Boudec (Paris VII - Jussieu) Counting rational points on singular cubic surfaces
2.11.11 Stephan Baier (Universität Göttingen) Inhomogeneous cubic congruences and rational points on del Pezzo surfaces
9.11.11 Peter Bruin (Universität Zürich) Ranks of elliptic curves with prescribed torsion over number fields
16.11.11 David Burns (King's College London) On main conjectures of geometric Iwasawa theory and related conjectures
23.11.11 Christopher Frei (LMU München) Counting points of bounded height over number fields
30.11.11 Jürgen Ritter (Universität Augsburg) Äquivariante Iwasawatheorie
7.12.11 Jakob Stix (Universität Heidelberg) On the divisibility of the Tate-Shafarevich group of an elliptic curve in the Weil-Chatelet group
11.1.12 Arati Khedekar Cohomology theory for topological groups
18.1.12 Dasheng Wei (LMU München) Brauer groups and rational points
25.1.12 Michael Dettweiler (Universität Bayreuth) Starre lokale Systeme und Motive
1.2.12 Tamás Szamuely (Alfréd Rényi Institute of Mathematics) Die prim-zu-p Fundamentalgruppe algebraischer Gruppen
Freitag, 3.2.12 gemeinsames Seminar München-Regensburg in Regensburg
14:30-15:30 Uhr Andreas Rosenschon (LMU München) Cycle Maps
16:00-17:00 Uhr Christopher Frei (LMU München) Rational points over number fields on a singular cubic surface
17:15-18:15 Uhr Rajender Adibhatla (Universität Regensburg) The local behaviour of modular Galois representations
16.2.12, 14:00 Uhr Markus Hanselmann (LMU München) Rational points on quartic hypersurfaces Disputation

 


Abstracts

Peter Bruin (Universität Zürich): Ranks of elliptic curves with prescribed torsion over number fields (9.11.11)

Let d be a positive integer, and let Td be the set of isomorphism classes of groups occurring as the torsion subgroup of E(K), where K is a number field of degree d and E is an elliptic curve over K. It is known that Td is finite. The sets T1 and T2 are known, as well as the subsets of T3 and T4 consisting of torsion groups occurring for infinitely many E/K up to isomorphism.

We study the following problem: for d ≤ 4 and T in Td, what are the possibilities for the rank of E(K) if K is a number field of degree d and E is an elliptic curve over K with torsion group T? In the cases d = 2 and T = Z/13Z or T = Z/18Z, and conjecturally also d = 4 and T = Z/22Z, it turns out that the rank is always even. We explain this by a phenomenon that we call false complex multiplication. This is work in progress with Johan Bosman, Andrej Dujella and Filip Najman.

Jürgen Ritter (Universität Augsburg): Äquivariante Iwasawatheorie (30.11.11)

Nach kurzer Wiederholung der klassischen Iwasawatheorie und ihrer Bedeutung für analytisch-algebraische Zusammenhänge in der Zahlentheorie wird eine nichtabelsche Verallgemeinerung der sogenannten "Hauptvermutung" vorgestellt, die erlaubt, Iwasawatheorie auch in nichtkommutativen Situationen einzusetzen. Der Beweis dieser "Hauptvermutung der äquivarianten Iwasawatheorie" wird grob skizziert werden (und ist gemeinsamer Arbeit mit A. Weiss entnommen).

Jakob Stix (Universität Heidelberg): On the divisibility of the Tate-Shafarevich group of an elliptic curve in the Weil-Chatelet group (7.12.11)

In this talk I will report on progress on the following two questions, the first posed by Cassels in 1961 and the second considered by Bashmakov in 1974. The first question is whether the elements of the Tate-Shafarevich group are infinitely divisible when considered as elements of the Weil-Chatelet group. The second question concerns the intersection of the Tate-Shafarevich group with the maximal divisible subgroup of the Weil-Chatelet group. This is joint work with Mirela Ciperiani.

Arati Khedekar: Cohomology theory for topological groups (11.1.12)

We define an explicit cohomology theory for topological groups based on locally continuous measurable cochains. We study its functorial properties and explore its relationship with other explicit cohomology theories. We apply the theory to the case of connected Lie groups and certain modules and see that extension of a connected Lie group by coefficient modules of certain kind are connected Lie groups.

Michael Dettweiler (Universität Bayreuth): Starre lokale Systeme und Motive (25.1.12)

Wir beleuchten verschiedene Begriffe von starren lokalen Systemen und stellen Methoden zur Konstruktion von assoziierten Motiven vor.

Tamás Szamuely (Alfréd Rényi Institute of Mathematics): Die prim-zu-p Fundamentalgruppe algebraischer Gruppen (1.2.12)

Nach einem klassischen Satz von Schreier ist die Fundamentalgruppe einer topologischen Gruppe kommutativ, und weiterhin hat jede Überlagerung eine Gruppenstruktur. Zusammen mit Michel Brion haben wir die algebraischen Analoga dieser Sätze für prim-zu-p étale Überlagerungen beliebiger algebraischen Gruppen gezeigt.