Publikationsdetails
No Singular Modulus Is a Unit
- verfasst von
- Yuri Bilu, Philipp Habegger, Lars Kühne
- Abstract
A result of the 2nd-named author states that there are only finitely many complex multiplication (CM)-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke's equidistribution theorem and is hence noneffective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted arguments, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in ${\mathbb{C}}^n$ not containing any special points.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Universite de Bordeaux
Universität Basel
- Typ
- Artikel
- Journal
- International Mathematics Research Notices
- Band
- 2020
- Seiten
- 10005-10041
- Anzahl der Seiten
- 37
- ISSN
- 1073-7928
- Publikationsdatum
- 01.12.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.1805.07167 (Zugang:
Offen)
https://doi.org/10.1093/imrn/rny274 (Zugang: Geschlossen)