Publikationsdetails

No Singular Modulus Is a Unit

verfasst von
Yuri Bilu, Philipp Habegger, Lars Kühne
Abstract

A result of the 2nd-named author states that there are only finitely many complex multiplication (CM)-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke's equidistribution theorem and is hence noneffective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted arguments, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in ${\mathbb{C}}^n$ not containing any special points.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Universite de Bordeaux
Universität Basel
Typ
Artikel
Journal
International Mathematics Research Notices
Band
2020
Seiten
10005-10041
Anzahl der Seiten
37
ISSN
1073-7928
Publikationsdatum
01.12.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1805.07167 (Zugang: Offen)
https://doi.org/10.1093/imrn/rny274 (Zugang: Geschlossen)