Publikationsdetails

Manin's conjecture for the chordal cubic fourfold

verfasst von
Ulrich Derenthal
Abstract

We prove the thin set version of Manin's conjecture for the chordal (or: determinantal) cubic fourfold, which is the secant variety of the Veronese surface. We reduce this counting problem to a result of Schmidt for quadratic points in the projective plane by showing that the chordal cubic fourfold is isomorphic to the symmetric square of the projective plane over the rational numbers.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Preprint
Publikationsdatum
22.04.2025
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2504.16051 (Zugang: Offen)