Publikationsdetails

The Manin–Peyre conjecture for smooth spherical Fano threefolds

verfasst von
Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi
Abstract

The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type N. Together with the previously solved case T and the toric cases, this covers all types of smooth spherical Fano threefolds. The case N features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Rheinische Friedrich-Wilhelms-Universität Bonn
Georg-August-Universität Göttingen
Institute for Advanced Studies
Typ
Artikel
Journal
Selecta Mathematica, New Series
Band
30
ISSN
1022-1824
Publikationsdatum
09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik, Allgemeine Physik und Astronomie
Elektronische Version(en)
https://doi.org/10.1007/s00029-024-00952-4 (Zugang: Offen)
https://doi.org/10.48550/arXiv.2203.14841 (Zugang: Offen)