Publikationsdetails
The Manin–Peyre conjecture for smooth spherical Fano threefolds
- verfasst von
- Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi
- Abstract
The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type N. Together with the previously solved case T and the toric cases, this covers all types of smooth spherical Fano threefolds. The case N features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Rheinische Friedrich-Wilhelms-Universität Bonn
Georg-August-Universität Göttingen
Institute for Advanced Studies
- Typ
- Artikel
- Journal
- Selecta Mathematica, New Series
- Band
- 30
- ISSN
- 1022-1824
- Publikationsdatum
- 09.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik, Allgemeine Physik und Astronomie
- Elektronische Version(en)
-
https://doi.org/10.1007/s00029-024-00952-4 (Zugang:
Offen)
https://doi.org/10.48550/arXiv.2203.14841 (Zugang: Offen)