Publikationsdetails
On the Northcott property for special values of L-functions
- verfasst von
- Fabien Pazuki, Riccardo Pengo
- Abstract
We propose an investigation on the Northcott, Bogomolov and Lehmer properties for special values of L-functions. We first introduce an axiomatic approach to these three properties. We then focus on the Northcott property for special values of L-functions. In the case of L-functions of pure motives, we prove a Northcott property for special values located at the left of the critical strip, assuming that the L-functions in question satisfy some expected properties. Inside the critical strip, focusing on the Dedekind zeta function of number fields, we prove that such a property does not hold for the special value at one, but holds for the special value at zero, and we give a related quantitative estimate in this case.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Københavns Universitet
- Typ
- Artikel
- Journal
- Revista matemática iberoamericana
- Band
- 40
- Seiten
- 1-42
- Anzahl der Seiten
- 42
- ISSN
- 0213-2230
- Publikationsdatum
- 08.02.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Elektronische Version(en)
-
https://doi.org/10.4171/rmi/1454 (Zugang:
Offen)