Publikationsdetails

On the Northcott property for special values of L-functions

verfasst von
Fabien Pazuki, Riccardo Pengo
Abstract

We propose an investigation on the Northcott, Bogomolov and Lehmer properties for special values of L-functions. We first introduce an axiomatic approach to these three properties. We then focus on the Northcott property for special values of L-functions. In the case of L-functions of pure motives, we prove a Northcott property for special values located at the left of the critical strip, assuming that the L-functions in question satisfy some expected properties. Inside the critical strip, focusing on the Dedekind zeta function of number fields, we prove that such a property does not hold for the special value at one, but holds for the special value at zero, and we give a related quantitative estimate in this case.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Københavns Universitet
Typ
Artikel
Journal
Revista matemática iberoamericana
Band
40
Seiten
1-42
Anzahl der Seiten
42
ISSN
0213-2230
Publikationsdatum
08.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.)
Elektronische Version(en)
https://doi.org/10.4171/rmi/1454 (Zugang: Offen)