Publikationsdetails
On p-parts of Brauer character degrees and p-regular conjugacy class sizes of finite groups
- verfasst von
- Christine Bessenrodt, Yong Yang
- Abstract
Let G be a finite group, p a prime, and IBrp(G) the set of irreducible p-Brauer characters of G. Let e¯p(G) be the largest integer such that pe¯p(G) divides χ(1) for some χ∈IBrp(G). We show that |G:Op(G)|p≤pke¯p(G) for an explicitly given constant k. We also study the analogous problem for the p-parts of the conjugacy class sizes of p-regular elements of finite groups.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Texas State University
Chongqing University of Arts and Science
- Typ
- Artikel
- Journal
- Journal of algebra
- Band
- 560
- Seiten
- 296-311
- Anzahl der Seiten
- 16
- ISSN
- 0021-8693
- Publikationsdatum
- 15.10.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.1016/j.jalgebra.2020.05.018 (Zugang:
Geschlossen)