Publikationsdetails

Torsion points on isogenous abelian varieties

verfasst von
Gabriel A. Dill
Abstract

Investigating a conjecture of Zannier, we study irreducible subvarieties of abelian schemes that dominate the base and contain a Zariski dense set of torsion points that lie on pairwise isogenous fibers. If everything is defined over the algebraic numbers and the abelian scheme has maximal variation, we prove that the geometric generic fiber of such a subvariety is a union of torsion cosets. We go on to prove fully or partially explicit versions of this result in fibered powers of the Legendre family of elliptic curves. Finally, we apply a recent result of Galateau and Martínez to obtain uniform bounds on the number of maximal torsion cosets in the Manin-Mumford problem across a given isogeny class. For the proofs, we adapt the strategy, due to Lang, Serre, Tate, and Hindry, of using Galois automorphisms that act on the torsion as homotheties to the family setting.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Compositio mathematica
Band
158
Seiten
1020-1051
Anzahl der Seiten
32
ISSN
0010-437X
Publikationsdatum
20.07.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2011.05815 (Zugang: Offen)
https://doi.org/10.1112/S0010437X22007400 (Zugang: Geschlossen)