Publikationsdetails

Principal 2-blocks with wreathed defect groups up to splendid Morita equivalence

verfasst von
Shigeo Koshitani, Caroline Lassueur, Benjamin Sambale
Abstract

We classify principal -blocks of finite groups with Sylow -subgroups isomorphic to a wreathed -group with up to Morita equivalence and up to splendid Morita equivalence. As a consequence, we obtain that Puig’s Finiteness Conjecture holds for such blocks. Furthermore, we obtain a classification of such groups modulo , which is a purely group theoretical result and of independent interest. Methods previously applied to blocks of tame representation type are used. They are, however, further developed in order to deal with blocks of wild representation type.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Chiba University
Typ
Artikel
Journal
Annals of Representation Theory
Band
1
Seiten
439-463
Anzahl der Seiten
24
ISSN
2704-2081
Publikationsdatum
03.10.2024
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2310.13621 (Zugang: Offen)
https://doi.org/10.5802/art.16 (Zugang: Offen)