Publikationsdetails

Unlikely intersections of curves with algebraic subgroups in semiabelian varieties

verfasst von
Fabrizio Barroero, Lars Kühne, Harry Schmidt
Abstract

Let G be a semiabelian variety and C a curve in G that is not contained in a proper algebraic subgroup of G. In this situation, conjectures of Pink and Zilber imply that there are at most finitely many points contained in the so-called unlikely intersections of C with subgroups of codimension at least 2. In this note, we establish this assertion for general semiabelian varieties over Q¯. This extends results of Maurin and Bombieri, Habegger, Masser, and Zannier in the toric case as well as Habegger and Pila in the abelian case.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Universität Rom III
Københavns Universitet
Universität Basel
Typ
Artikel
Journal
Selecta Mathematica, New Series
Band
29
ISSN
1022-1824
Publikationsdatum
21.01.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.), Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1007/s00029-022-00823-w (Zugang: Offen)