Publikationsdetails
Unlikely intersections of curves with algebraic subgroups in semiabelian varieties
- verfasst von
- Fabrizio Barroero, Lars Kühne, Harry Schmidt
- Abstract
Let G be a semiabelian variety and C a curve in G that is not contained in a proper algebraic subgroup of G. In this situation, conjectures of Pink and Zilber imply that there are at most finitely many points contained in the so-called unlikely intersections of C with subgroups of codimension at least 2. In this note, we establish this assertion for general semiabelian varieties over Q¯. This extends results of Maurin and Bombieri, Habegger, Masser, and Zannier in the toric case as well as Habegger and Pila in the abelian case.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Universität Rom III
Københavns Universitet
Universität Basel
- Typ
- Artikel
- Journal
- Selecta Mathematica, New Series
- Band
- 29
- ISSN
- 1022-1824
- Publikationsdatum
- 21.01.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.), Physik und Astronomie (insg.)
- Elektronische Version(en)
-
https://doi.org/10.1007/s00029-022-00823-w (Zugang:
Offen)