Publikationsdetails
A Continuous Family of Marked Poset Polytopes
- verfasst von
- Xin Fang, Ghislain Fourier, Jan-philipp Litza, Christoph Pegel
- Abstract
For any marked poset we define a continuous family of polytopes, parametrized by a hypercube, generalizing the notions of marked order and marked chain polytopes. By providing transfer maps, we show that the vertices of the hypercube parametrize an Ehrhart equivalent family of lattice polytopes. The combinatorial type of the polytopes is constant when the parameters vary in the relative interior of each face of the hypercube. Moreover, with the help of a subdivision arising from a tropical hyperplane arrangement associated to the marked poset, we give an explicit description of the vertices of the polytope for generic parameters.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Universität zu Köln
Universität Bremen
- Typ
- Artikel
- Journal
- SIAM Journal on Discrete Mathematics
- Band
- 34
- Seiten
- 611-639
- Anzahl der Seiten
- 29
- ISSN
- 0895-4801
- Publikationsdatum
- 03.03.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.1712.01037 (Zugang:
Offen)
https://doi.org/10.1137/18M1228529 (Zugang: Geschlossen)