Publikationsdetails

Points of small height on semiabelian varieties

verfasst von
Lars Kühne
Abstract

The equidistribution conjecture is proved for general semiabelian varieties over number fields. Previously, this conjecture was only known in the special case of almost split semiabelian varieties through work of Chambert-Loir. The general case has remained intractable so far because the height of a semiabelian variety is negative unless it is almost split. In fact, this places the conjecture outside the scope of Yuan's equidistribution theorem on algebraic dynamical systems. To overcome this, an asymptotic adaption of the equidistribution technique invented by Szpiro, Ullmo, and Zhang is used here. It also allows a new proof of the Bogomolov conjecture and hence a self-contained proof of the strong equidistribution conjecture in the same general setting.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Journal of the European Mathematical Society
Band
24
Seiten
2077-2131
Anzahl der Seiten
55
ISSN
1435-9855
Publikationsdatum
25.09.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.), Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.4171/JEMS/1125 (Zugang: Offen)