Publikationsdetails

Irreducible restrictions of representations of alternating groups in small characteristics: Reduction theorems

verfasst von
Alexander Kleshchev, Lucia Morotti, Pham Tiep
Abstract

We study irreducible restrictions from modules over alternating groups to proper subgroups, and prove reduction results which substantially restrict the classes of subgroups and modules for which this is possible. This problem had been solved when the characteristic of the ground field is greater than 3, but the small characteristics cases require a substantially more delicate analysis and new ideas. This work fits into the Aschbacher-Scott program on maximal subgroups of finite classical groups.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
University of Oregon
Rutgers University
Typ
Artikel
Journal
Representation Theory of the American Mathematical Society
Band
24
Seiten
115-150
Anzahl der Seiten
36
Publikationsdatum
20.02.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (sonstige)
Elektronische Version(en)
https://doi.org/10.1090/ERT/538 (Zugang: Geschlossen)