Publikationsdetails
Irreducible restrictions of representations of alternating groups in small characteristics: Reduction theorems
- verfasst von
- Alexander Kleshchev, Lucia Morotti, Pham Tiep
- Abstract
We study irreducible restrictions from modules over alternating groups to proper subgroups, and prove reduction results which substantially restrict the classes of subgroups and modules for which this is possible. This problem had been solved when the characteristic of the ground field is greater than 3, but the small characteristics cases require a substantially more delicate analysis and new ideas. This work fits into the Aschbacher-Scott program on maximal subgroups of finite classical groups.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
University of Oregon
Rutgers University
- Typ
- Artikel
- Journal
- Representation Theory of the American Mathematical Society
- Band
- 24
- Seiten
- 115-150
- Anzahl der Seiten
- 36
- Publikationsdatum
- 20.02.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (sonstige)
- Elektronische Version(en)
-
https://doi.org/10.1090/ERT/538 (Zugang:
Geschlossen)