Publikationsdetails

On a Theorem of Ledermann and Neumann

verfasst von
Benjamin Sambale
Abstract

It is easy to see that the number of automorphisms of a finite group of order n cannot exceed (Formula presented.). Ledermann and Neumann proved conversely that the order of a finite group G can be bounded by a function depending only on the number of automorphisms of G. While their proof is long and complicated, the result was rediscovered by Nagrebeckiĭ 14 years later. In this article, we give a short and elementary proof of Ledermann–Neumann’s theorem based on some of Nagrebeckiĭ’s arguments. We also discuss the history of related conjectures.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
American Mathematical Monthly
Band
127
Seiten
827-834
Anzahl der Seiten
8
ISSN
0002-9890
Publikationsdatum
21.10.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1909.13220 (Zugang: Offen)
https://doi.org/10.1080/00029890.2020.1803625 (Zugang: Geschlossen)