Publikationsdetails
Generic rank of Betti map and unlikely intersections
- verfasst von
- Ziyang Gao
- Abstract
Let \(\mathcal{A} \rightarrow S\) be an abelian scheme over an irreducible variety over \(\mathbb{C}\) of relative dimension \(g\). For any simply-connected subset \(\Delta\) of \(S^{\mathrm{an}}\) one can define the Betti map from \(\mathcal{A}_{\Delta}\) to \(\mathbb{T}^{2g}\), the real torus of dimension \(2g\), by identifying each closed fiber of \(\mathcal{A}_{\Delta} \rightarrow \Delta\) with \(\mathbb{T}^{2g}\) via the Betti homology. Computing the generic rank of the Betti map restricted to a subvariety \(X\) of \(\mathcal{A}\) is useful to study Diophantine problems, e.g. proving the Geometric Bogomolov Conjecture over characteristic \(0\) and studying the relative Manin-Mumford conjecture. In this paper we give a geometric criterion to detect this rank. As an application we show that it is maximal after taking a large enough fibered power (if \(X\) satisfies some conditions): it is an important step to prove the bound for the number of rational points on curves [DGH20]. Another application is to answer a question of Andr\'e-Corvaja-Zannier and improve a result of Voisin. We also systematically study its link with the relative Manin-Mumford conjecture, reducing the latter to a simpler conjecture. Our tools are functional transcendence and unlikely intersections for mixed Shimura varieties.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Compositio Math.
- Band
- 156
- Seiten
- 2469-2509
- Anzahl der Seiten
- 41
- Publikationsdatum
- 12.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.1810.12929 (Zugang:
Offen)
https://doi.org/10.1112/S0010437X20007435 (Zugang: Geschlossen)
https://doi.org/10.1112/S0010437X21007673 (Zugang: Offen)