Publikationsdetails

Adjoint maps between implicative semilattices and continuity of localic maps

verfasst von
Marcel Erné, Jorge Picado, Aleš Pultr
Abstract

We study residuated homomorphisms (r-morphisms) and their adjoints, the so-called localizations (or l-morphisms), between implicative semilattices, because these objects may be characterized as semilattices whose unary meet operations have adjoints. Since left resp. right adjoint maps are the residuated resp. residual maps (having the property that preimages of principal downsets resp. upsets are again such), one may not only regard the l-morphisms as abstract continuous maps in a pointfree framework (as familiar in the complete case), but also characterize them by concrete closure-theoretical continuity properties. These concepts apply to locales (frames, complete Heyting lattices) and provide generalizations of continuous and open maps between spaces to an algebraic (not necessarily complete) pointfree setting.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Charles University
University of Coimbra
Typ
Artikel
Journal
Algebra universalis
Band
83
Anzahl der Seiten
23
ISSN
0002-5240
Publikationsdatum
05.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie, Logik
Elektronische Version(en)
https://doi.org/10.1007/s00012-022-00767-4 (Zugang: Offen)