Publikationsdetails

Frieze patterns over algebraic numbers

verfasst von
Michael Cuntz, Thorsten Holm, Carlo Pagano
Abstract

Conway and Coxeter have shown that frieze patterns over positive rational integers are in bijection with triangulations of polygons. An investigation of frieze patterns over other subsets of the complex numbers has recently been initiated by Jorgensen and the first two authors. In this paper we first show that a ring of algebraic numbers has finitely many units if and only if it is an order in a quadratic number field Q(\sqrt{d}) where d

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Concordia University
Typ
Artikel
Journal
Bulletin of the London Mathematical Society
Band
56
Seiten
1417-1432
Anzahl der Seiten
16
ISSN
0024-6093
Publikationsdatum
02.04.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2306.12148 (Zugang: Offen)
https://doi.org/10.1112/blms.13003 (Zugang: Offen)