Publikationsdetails
Noncommutative frieze patterns with coefficients
- verfasst von
- Michael Cuntz, Thorsten Holm, Peter Jorgensen
- Abstract
Based on Berenstein and Retakh's notion of noncommutative polygons we introduce and study noncommutative frieze patterns. We generalize several notions and fundamental properties from the classic (commutative) frieze patterns to noncommutative frieze patterns, e.g. propagation formulae and μ-matrices, quiddity cycles and reduction formulae, and we show that local noncommutative exchange relations and local triangle relations imply all noncommutative exchange relations and triangle relations. Throughout, we allow coefficients, so we obtain generalizations of results from our earlier paper on frieze patterns with coefficients from the commutative to the noncommutative setting.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Aarhus University
- Typ
- Preprint
- Anzahl der Seiten
- 18
- Publikationsdatum
- 15.03.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2403.09156 (Zugang:
Offen)