Publikationsdetails

Congruence Normality of Simplicial Hyperplane Arrangements via Oriented Matroids

verfasst von
Michael Cuntz, Sophia Elia, Jean Philippe Labbé
Abstract

A catalogue of simplicial hyperplane arrangements was first given by Grünbaum in 1971. These arrangements naturally generalize finite Coxeter arrangements and also the weak order through the poset of regions. The weak order is known to be a congruence normal lattice, and congruence normality of lattices of regions of simplicial arrangements can be determined using polyhedral cones called shards. In this article, we update Grünbaum’s catalogue by providing normals realizing all known simplicial arrangements with up to 37 lines and key invariants. Then we add structure to this catalogue by determining which arrangements always/sometimes/never lead to congruence normal lattices of regions. To this end, we use oriented matroids to recast shards as covectors to determine congruence normality of large hyperplane arrangements. We also show that lattices of regions coming from finite Weyl groupoids of any rank are always congruence normal.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Freie Universität Berlin (FU Berlin)
Typ
Artikel
Journal
Annals of combinatorics
Band
26
Anzahl der Seiten
85
ISSN
0218-0006
Publikationsdatum
03.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Diskrete Mathematik und Kombinatorik
Elektronische Version(en)
https://arxiv.org/abs/2009.14152 (Zugang: Offen)
https://doi.org/10.1007/s00026-021-00555-2 (Zugang: Offen)