Publikationsdetails

Integral points on a del Pezzo surface over imaginary quadratic fields

verfasst von
Judith Lena Ortmann
Abstract

Chambert-Loir and Tschinkel constructed a framework for a geometric interpretation of the density of integral points on certain varieties, which was refined by Wilsch. By using harmonic analysis and the circle method, it was proved for some partial equivariant compactifications of vector groups over arbitrary number fields and high-dimensional complete intersections over Q. Further, there are some examples of using the torsor method for singular del Pezzo surfaces over Q. In this paper, we generalise the torsor method for integral points from Q to imaginary quadratic number fields. As a first representative example, we characterise integral points of bounded log-anticanonical height on a quartic del Pezzo surface of singularity type A3 over imaginary quadratic fields with respect to its singularity and its lines. Furthermore, we count these integral points of bounded height by using universal torsors and interpret the count geometrically to prove an analogue of Manin’s conjecture for the set of integral points with respect to the singularity and to a line. Our results coincide with the predicted framework.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Research in Number Theory
Band
10
Anzahl der Seiten
32
Publikationsdatum
08.11.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Fachgebiet (basierend auf ÖFOS 2012)
Zahlentheorie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2307.12877 (Zugang: Offen)
https://doi.org/10.1007/s40993-024-00572-z (Zugang: Offen)