Publikationsdetails

Around the support problem for Hilbert class polynomials

verfasst von
Francesco Campagna, Gabriel Andreas Dill
Abstract

Let \(H_D(T)\) denote the Hilbert class polynomial of the imaginary quadratic order of discriminant \(D\). We study the rate of growth of the greatest common divisor of \(H_D(a)\) and \(H_D(b)\) as \(|D| \to \infty\) for \(a\) and \(b\) belonging to various Dedekind domains. We also study the modular support problem: if for all but finitely many \(D\) every prime ideal dividing \(H_D(a)\) also divides \(H_D(b)\), what can we say about \(a\) and \(b\)? If we replace \(H_D(T)\) by \(T^n-1\) and the Dedekind domain is a ring of \(S\)-integers in some number field, then these are classical questions that have been investigated by Bugeaud-Corvaja-Zannier, Corvaja-Zannier, and Corrales-Rodrig\'a\~{n}ez-Schoof.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Preprint
Publikationsdatum
28.04.2022
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)