Publikationsdetails

Specialization of Mordell-Weil ranks of abelian schemes over surfaces to curves

verfasst von
Timo Keller
Abstract

Using the Shioda-Tate theorem and an adaptation of Silverman's specialization theorem, we reduce the specialization of Mordell-Weil ranks for abelian varieties over fields finitely generated over infinite finitely generated fields k to the specialization theorem for Néron-Severi ranks recently proved by Ambrosi in positive characteristic. More precisely, we prove that after a blow-up of the base surface S, for all vertical curves Sx of a fibration S → U ⊆Pk1 with x from the complement of a sparse subset of |U|, the Mordell-Weil rank of an abelian scheme over S stays the same when restricted to Sx.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
International Journal of Number Theory
Band
19
Seiten
1671-1680
Anzahl der Seiten
10
ISSN
1793-0421
Publikationsdatum
27.03.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2301.12816 (Zugang: Offen)
https://doi.org/10.1142/S1793042123500811 (Zugang: Geschlossen)