Publikationsdetails
Specialization of Mordell-Weil ranks of abelian schemes over surfaces to curves
- verfasst von
- Timo Keller
- Abstract
Using the Shioda-Tate theorem and an adaptation of Silverman's specialization theorem, we reduce the specialization of Mordell-Weil ranks for abelian varieties over fields finitely generated over infinite finitely generated fields k to the specialization theorem for Néron-Severi ranks recently proved by Ambrosi in positive characteristic. More precisely, we prove that after a blow-up of the base surface S, for all vertical curves Sx of a fibration S → U ⊆Pk1 with x from the complement of a sparse subset of |U|, the Mordell-Weil rank of an abelian scheme over S stays the same when restricted to Sx.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- International Journal of Number Theory
- Band
- 19
- Seiten
- 1671-1680
- Anzahl der Seiten
- 10
- ISSN
- 1793-0421
- Publikationsdatum
- 27.03.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2301.12816 (Zugang:
Offen)
https://doi.org/10.1142/S1793042123500811 (Zugang: Geschlossen)