Publikationsdetails

17T7 is a Galois group over the rationals

verfasst von
Raymond van Bommel, Edgar Costa, Noam D. Elkies, Timo Keller, Sam Schiavone, John Voight
Abstract

We prove that the transitive permutation group 17T7, isomorphic to a split extension of $C_2$ by $\mathrm{PSL}_2(\mathbb{F}_{16})$, is a Galois group over the rationals. The group arises from the field of definition of the 2-torsion on an abelian fourfold with real multiplication defined over a real quadratic field. We find such fourfolds using Hilbert modular forms. Finally, building upon work of Demb\'el\'e, we show how to conjecturally reconstruct a period matrix for an abelian variety attached to a Hilbert modular form; we then use this to exhibit an explicit degree 17 polynomial with Galois group 17T7.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Preprint
Publikationsdatum
12.11.2024
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)