Publikationsdetails
17T7 is a Galois group over the rationals
- verfasst von
- Raymond van Bommel, Edgar Costa, Noam D. Elkies, Timo Keller, Sam Schiavone, John Voight
- Abstract
We prove that the transitive permutation group 17T7, isomorphic to a split extension of $C_2$ by $\mathrm{PSL}_2(\mathbb{F}_{16})$, is a Galois group over the rationals. The group arises from the field of definition of the 2-torsion on an abelian fourfold with real multiplication defined over a real quadratic field. We find such fourfolds using Hilbert modular forms. Finally, building upon work of Demb\'el\'e, we show how to conjecturally reconstruct a period matrix for an abelian variety attached to a Hilbert modular form; we then use this to exhibit an explicit degree 17 polynomial with Galois group 17T7.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Preprint
- Publikationsdatum
- 12.11.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)