Publikationsdetails

Quantitative arithmetic of diagonal degree 2 K3 surfaces

verfasst von
Damián Gvirtz, Daniel Loughran, Masahiro Nakahara
Abstract

In this paper we study the existence of rational points for the family of K3 surfaces over Q given by

w2 = A1x6 1 + A2 x6 2 + A3x6 3 .

When the coefficients are ordered by height, we show that the Brauer group is almost always trivial, and find the exact order of magnitude of surfaces for which there is a Brauer–Manin obstruction to the Hasse principle. Our results show definitively that K3 surfaces can have a Brauer–Manin obstruction to the Hasse principle that is only explained by odd order torsion.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
University of Bath
Typ
Artikel
Journal
Mathematische Annalen
Band
384
Seiten
135-209
Anzahl der Seiten
75
ISSN
0025-5831
Publikationsdatum
10.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.1910.06257 (Zugang: Offen)
https://doi.org/10.1007/s00208-021-02280-w (Zugang: Geschlossen)