Publikationsdetails
Quantitative arithmetic of diagonal degree 2 K3 surfaces
- verfasst von
- Damián Gvirtz, Daniel Loughran, Masahiro Nakahara
- Abstract
In this paper we study the existence of rational points for the family of K3 surfaces over Q given by
w2 = A1x6 1 + A2 x6 2 + A3x6 3 .
When the coefficients are ordered by height, we show that the Brauer group is almost always trivial, and find the exact order of magnitude of surfaces for which there is a Brauer–Manin obstruction to the Hasse principle. Our results show definitively that K3 surfaces can have a Brauer–Manin obstruction to the Hasse principle that is only explained by odd order torsion.- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
University of Bath
- Typ
- Artikel
- Journal
- Mathematische Annalen
- Band
- 384
- Seiten
- 135-209
- Anzahl der Seiten
- 75
- ISSN
- 0025-5831
- Publikationsdatum
- 10.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.1910.06257 (Zugang:
Offen)
https://doi.org/10.1007/s00208-021-02280-w (Zugang: Geschlossen)