Publikationsdetails
Groups of p-central type
- verfasst von
- Benjamin Sambale
- Abstract
A finite group G with center Z is of central type if there exists a fully ramified character λ∈ Irr (Z) , i. e. the induced character λG is a multiple of an irreducible character. Howlett–Isaacs have shown that G is solvable in this situation. A corresponding theorem for p-Brauer characters was proved by Navarro–Späth–Tiep under the assumption that p≠ 5 . We show that there are no exceptions for p= 5 , i. e. every group of p-central type is solvable. Gagola proved that every solvable group can be embedded in G/Z for some group G of central type. We generalize this to groups of p-central type. As an application we construct some interesting non-nilpotent blocks with a unique Brauer character. This is related to a question by Kessar and Linckelmann.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Mathematische Zeitschrift
- Band
- 306
- Anzahl der Seiten
- 9
- ISSN
- 0025-5874
- Publikationsdatum
- 24.11.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Elektronische Version(en)
-
https://doi.org/10.1007/s00209-023-03406-3 (Zugang:
Offen)